If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+103x+603=0
a = 1; b = 103; c = +603;
Δ = b2-4ac
Δ = 1032-4·1·603
Δ = 8197
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(103)-\sqrt{8197}}{2*1}=\frac{-103-\sqrt{8197}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(103)+\sqrt{8197}}{2*1}=\frac{-103+\sqrt{8197}}{2} $
| 5k-(7+k)=-(9k+7) | | 90-3x=0 | | x|-5=3 | | 3x+60=81 | | 90-x=0 | | K=(4x-2)-7 | | 6x^2-25x-12=0 | | 9z-6=23z-14 | | 8y(2y+4)=102 | | x^2+11/2x=1/2 | | 12x-12=6(3x) | | (5x/2)−4=(2x−7/6) | | 2y+4=-18-9y | | 7+4(3x-6)=-5(2x+1) | | 9y+53=8 | | 27.79=5g+3.94 | | x^2+10=54 | | 4y+53+5y=26+ | | 5x+4Y=95 | | 4x/3-1=19 | | 6/11=36x | | 1/2(6+-z)=z | | 35=4v+8 | | 31.64=6g+3.74 | | 76=20+7c | | 11x-(6×-5)=40 | | 3(4z-7)=-21=12z | | 3/4x-1/3=1/4x+2/3 | | t(t+1)^2−2t/(t+1)−80=0 | | 2n-5n=2/6 | | 40x+5(1.25x)=555 | | 15+x=30+0.1x |